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Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical
scaling exponents
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An example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is
detectable both in the ‘‘flattening’’ of the inertial-range scaling exponent hierarchy and in the behavior of
odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kine-
matic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic
contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become prac-
tically indistinguishable. Moreover, the skewness factor now diverges as the Pe´clet number goes to infinity, a
further indication of small-scale anisotropy.

PACS number~s!: 47.27.Te, 05.10.Cc, 47.27.2i, 46.65.1g
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A wide interest has recently been devoted to the poss
occurrence of small-scale isotropy restoration for scalar~see
e.g., Ref.@1# and references therein!, Navier-Stokes@2,3#,
and magnetohydrodynamical~MHD! turbulence@4–6#. The
scenario can be summarized as follows. In the presenc
anisotropic large-scale injection mechanisms, the inert
range statistics is characterized by an infinite hierarchy
scaling exponents; however, the leading contribution to s
ing comes from the isotropic component. From this point
view, one might argue that large-scale anisotropy does
affect inertial-range scaling properties. Actually, focusing
a larger set of observables, small-scale anisotropies bec
manifest. It turns out that the behavior of odd-order dime
sionless ratios~e.g., skewness and hyperskewness! is com-
pletely different from the case of small-scale isotropy res
ration. Such indicators go to zero down to the inertial ran
much slower than predicted by dimensional considerati
@7# or, more dramatically, they diverge at the smallest sca
@6# ~see also@8,9#!.

The main aim of this Rapid Communication is to prese
a model of MHD turbulence where, by varying the degree
compressibility of the velocity field, anisotropic persisten
is now detectable both from the ‘‘flattening’’ of the hierarch
of inertial-range scaling exponents~the isotropic componen
and the first anisotropic ones may become practically in
tinguishable! and the divergence of the skewness factor w
the Péclet number. We give the basic ideas and resu
longer and more exhaustive technical discussions will
presented elsewhere.

In the presence of a mean componentBo ~actually varying
on a very large scaleL) and for the compressible velocit
field v, the kinematic MHD equations describing the evo
tion of the fluctuating~divergence-free! part B of the mag-
netic field are@10#:

] tBa1v i] iBa52~Ba1Ba
o !] iv i1Bi] iva1Bi

o] iva

1k0]2Ba , a51, . . . ,d, ~1!
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wherek0 is the magnetic diffusivity. The fieldBo plays the
same role as an external forcing driving the system and
also a source of anisotropy for the magnetic field statistic

Our choice for the velocity statistics generalizes that
the well-known kinematic Kazantsev-Kraichnan model f
the compressible case:v is a Gaussian process of zero ave
age, homogeneous, isotropic, and white in time. It is s
similar and defined by the two-point correlation function

^va~ t,x!vb~ t8, x8!&5d~ t2t8!@dab
0 2Sab~x2x8!#, ~2!

wheredab
0 5constdab and Sab(x2x8) is fixed by isotropy

and scaling:

Sab~r !5r jFXdab1Y r ar b

r 2 G , r[ux2x8u, ~3!

with the coefficients

X5
S 2~d1j21!2jC 2

~d1j!~d21!j
, Y5

dC 22S 2

~d1j!~d21!
. ~4!

The degree of compressibility is thus controlled by the ra
`[C 2/S 2, with S 2}^(] ivk] ivk)& andC 2}^] iv i)

2&. It satis-
fies the inequality 0<`<1; `50 and 1 corresponding to
the purely solenoidal and potential velocity fields, resp
tively.

In the present paper our attention will be focused on
inertial-range behavior of magnetic correlation function
where power laws are expected in their decompositions o
set of orthonormal functionsP,

^Bi
n~ t,x!B

i
q~ t,x8!&5(

j 50

`

Pj~cosf!r z j
n,q

, ~5!

Bi being some component ofB, e.g., its projection along the
directionr̂[r /r or B̂o[Bo/Bo, andf is the angle betweenr
and Bo. Due to the anisotropic injection mechanism, t
R5891 ©2000 The American Physical Society
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inertial-range statistics is now characterized by an infin
hierarchy of exponents (j denotes thej th anisotropic sector!,
rather than just one exponent, as in the isotropic case.

If the Kolmogorov 1941 isotropization hypothesis hold
the contribution from the anisotropic sectors~i.e., j Þ0) to
the scaling of correlation functions should be negligible w
respect to the isotropic component. Such a picture ind
holds for even correlation functions and solenoidal veloc
@4,6#, but it breaks down for compressibility that is stron
enough.

In order to prove this fact, consider first the pair corre
tion function, Cab(t,r )[^Ba(t,x)Bb(t,x8)&. Here, exploit-
ing the zero-mode technique@11–14#, the complete set o
scaling exponentsz j

1,1 can be found nonperturbatively. W
give the basic ideas of the strategy.

A closed equation forCab can be found due to the tim
decorrelation of the velocity field:

] tCab5Si j ] i] jCab2~] jSib!] iCa j2~] jSa i !~] iCj b!

1~] i] jSab!~Ci j 1Bi
oBj

o!12k0]2Cab

2Bb
oBj

o] i] jSa i2Ba
oBj

o] i] jSb i1Ba
oBb

o] i] jSi j

2Ca j~] i] jSb i !1Cb j] i] jSab1Cab] i] jSi j

12~] iCab!] jSi j ~6!

~see@6# for the derivation in the incompressible case!.
ProjectingCab on the basis that span the irreducible re

resentations of SO(d) @15#, a system of linear algebrai
equations for the scaling law coefficients is obtained. T
leading solutions are associated with the homogeneous s
tions of such system, i.e., with zero modes. Their scal
exponents follow from the imposition that the determinant
the coefficients be zero. Schematically, the solutions can
expressed in the form

z j
1,15a1Ab1gAd ~ j even!, ~7!

wherea, b, g, andd are cumbersome functions ofj, d, and
j and will not be reported here for the sake of brevity. Co
tributions to the scaling associated with oddj ’s vanish due to
the symmetryf°2f. In particular, the expression derive
in Ref. @16# in the isotropic case has been recovered here
j 50. Following the same arguments reported in Ref.@4#, it
is possible to show from Eq.~7! that the treshold to the
dynamo is the same as in the incompressible case. Fj
50 and j 52, the limit j→0 in Eq. ~7! yields

z0
1,15~2112`2d` !j1O~j2!, ~8!

z2
1,15

22`@41d~d22!~d11!#

~d21!~d12!
j1O~j2!, ~9!

while for larged we have

z0
1,152

`j

11`j
d2

122`~12j!

11`j
j1O~1/d!, ~10!

z2
1,152

`j

11`j
d2

`j~j22!

11`j
1O~1/d!. ~11!
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In Fig. 1 we present the behavior ofz j
1,1 obtained from

expression~7! for `50 ~thin lines! and `51 ~thick lines!.
As one can see, for̀ 50 we havez0

1,1,0 but z2
1,1.0 and

z4
1,1.0 so that, in particular, (r /L)z0

1,1
@(r /L)z2

1,1
in the iner-

tial range of scales.
The situation changes for̀.`c (`c;0.1274 for j 52

and d53), when z2
1,1 becomes negative for all 0<j<1.

This means that, for compressibility strong enough, (r /L)z0
1,1

and (r /L)z2
1,1

become very close~still, z j
1,1,zk

1,1 for j ,k).
As we can see from Eqs.~10! and ~11! the effect becomes
dramatic for large dimensions and̀Þ0 when z0

1,1;z2
1,1.

The contribution to the scaling in Eq.~5! coming from the
sector j 52 thus becomes less and less subleading a`
and/ord increase.

Further strong evidence of the crucial role of compre
ibility in the failure of the small-scale isotropy restoratio
can be obtained by looking at the higher-order correlat
functions@i.e.,n and/orq.1 in Eq.~5!# and, in particular, at
dimensionless ratios of odd-order moments. Were isotr
restored at small scales, such ratios would go to zero
large Pe´clet number. The latter is defined as Pe[(L/h)1/j,
whereL is the integral scale andh}k0

1/j is the dissipation
scale.

Nonzero values of such indicators are thus the signa
of anisotropy persistence. As we are going to show, in c
trast to the incompressible case, for` large enough the
skewness factor now diverges as Pe→`. To be more spe-
cific, the leading contribution in expression~5! can be writ-
ten as

^Bi
n~ t,x!Bi

q
~ t,x8!&}~r /h!a0

n,q
~r /L !b0

n,q
}r z0

n,q
, ~12!

where we have definedz0
n,q[a0

n,q1b0
n,q . The expressions

for z0
n,q have been obtained up to first order inj by means of

the field theoretic renormalization group and operator pr
uct expansion. A detailed presentation of these techniq
for the casè 50 can be found in@6# ~see also Refs.@8,9,17#
for the scalar case and@18# for general review!; below we
confine ourselves to only the necessary information.

The stochastic problem~1! and~2! can be reformulated a
a multiplicatively renormalizable field theoretic model; th
corresponding RG equations have infrared stable fixed po
This implies existence of scaling behavior for all the cor
lation functions in the infrared region with certain scalin
dimensions, calculated in the form of series inj. In this
sense,j is similar to«542d in the models of critical phe-
nomena.

FIG. 1. Behavior ofz j
1,1 vs j for d53 and j 50, 2, and 4~from

below to above!. Thick lines,`51; thin lines,`50.
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The key role is played by the scaling dimensionsD@n, j #
of the j th rank irreducible tensor composite operators

Ba1
~x!•••Ba j

~x!@Ba~x!Ba~x!# l1•••. ~13!

Heren[2l 1 j is the total number ofB’s and the dots stand
for the subtractions~needed forj >2) which make the op-
erator traceless with respect to any pair of indices, for
ample, BaBb2dabB2/d and so on. In the first order inj
~one-loop approximation! we have obtained

D@n, j #5
j

2~d21!~d12!
$n~n21!

3@22`~d32d222d14!#2~n2p!

3~n1p1d22!~d1122` !%1O~j2!. ~14!

Note that for any fixedn and anyd.1, dimension~14!
decreases withj and reaches its minimum for the minim
possible valuej n , i.e., j n50 if n is even andj n51 if n is
odd. Furthermore, this minimal value is negative and it
creases monotonically asn grows, 0.D2k,0.D2k11,1
.D2k12,0.

Thus the behavior of correlation functions~5! in the in-
frared range (r /h@1 and any fixedr /L) has the form

^Bi
n~ t,x!Bi

q
~ t,x8!&}S r

h D 2D[n, j n] 2D[q, j q]

xS r

L D ~15!

~the leading term is given by theminimaldimensions!, while
the form of the scaling functionx(r /L) at r /L→0 ~inertial
range! is obtained with the aid of the operator product e
pansion~OPE!:

xS r

L D5(
F

CFS r

L D DF

. ~16!

Here the sum runs over all possible composite operatoF
entering the OPE,DF being their scaling dimensions, andCF
numerical coefficients analytical in (r /L)2. The leading term
of the smallr /L behavior in thej th shell is given by thej th
rank operator with minimal dimension; owing to the linear
in B of Eq. ~1!, the number of fieldsB in the operatorsF
does not exceed their number on the left-hand side of
~15!. Thus the exponents in Eq.~5! are related to the dimen
sions~14! as follows:

z j
n,q5D@n1q, j #2D@n, j n#2D@q, j q#.

We thus conclude that the inequality]D@n, j #/] j >0, which
follows from Eq. ~14! for all ` and d>2, generalizes the
hierarchy discussed above to the higher-order functions
becomes flatter and flatter as̀ grows (]2D@n, j #/] j ]`
<0), while for d→` ~and `Þ0) the effect becomes eve
stronger: in the leadingO(d), expressions~14! and~17! are
now independent ofj.

The leading term of Eq.~5! in the inertial range is given
by the contribution with the minimalj,
-

-

-

q.

It

z0
n,q5H 2j

nq~11`d222` !1~d1122` !

~d12!

2
jnq

~d12!
~11`d222` !,

~17!

where the first holds if bothn andq are odd, and the secon
otherwise.

For n5q51, expression~8! is recovered. Knowing the
exponentsa0

n,q and b0
n,q , dimensionless ratios of the form

R2n11(r )[^Buu
2n(x)Buu(x8)&/^Buu(x)Buu(x8)& (2n11)/2 can be

constructed and, as in Ref.@7#, evaluated at the dissipativ
scale@i.e., r 5h in Eq. ~12!#. When doing this, the explicit
dependence on Pe appears and the finalO(j) expressions
read

R2n11~Pe!}Pes2n11, n51,2, . . . , ~18!

s2n11~` ![
2n2~122`1`d2!

~d12!
2

~122`1`d!

2
.

~19!

It is easy to verify from expression~19! that for d>2 and
n>1 we have ]s2n11(`)/]`.0. Negative values of
s2n11(0) may thus become positive due to`. In particular,
for d53 we obtains3(`)5(23̀ 21)/10, which becomes
positive for `.1/23. It then follows thatR3→` as Pe
→`, the footprint of the persistence of the small-scale a
isotropy.

Some remarks on the limit of large space dimensions
worth noting. One immediately realizes from Eq.~17! that,
for d→` the scaling exponents reduce toz0

n,q52jnqd̀ ;
that means the vanishing of intermittency. Note that the
sult z0

1,15z2
1,1 for d→` is nonperturbative. At the dissipativ

scaleh, s2n11(`)5`d(2n221/2).0, two clear signatures
of small-scale anisotropy persistence. The latter may t
occur also in the absence of intermittency.

Let us now examine the possible mechanisms at the or
of the small-scale anisotropy persistence in our proble
They can be easily grasped in two dimensions; our previ
results being valid for alld>2, it is reasonable to expect tha
the mechanisms we are going to show hold also for hig
d’s. Let us start from the incompressible case assum
without loss of generality, thatB̂o is oriented along they axis
~i.e., B̂o[ey). As we shall see, all our considerations w
hold, a fortiori, in the compressible case.

It can be shown that the magnetic field can be represe
by the ~scalar! magnetic flux function in the formB5c
3ez , wherec satisfies the passive scalar equation forced
a large scale gradientG[Bo3ez . One finds] tC1v i] iC)
5k0]2C where C(t,x)[c1Gixi . An interesting feature
recently recognized for the passive scalar turbulence~see,
e.g., @19# and @20–23#! is related to the formation o
‘‘cliffs,’’ i.e., very steep scalar gradients within very sho
distances separated by ‘‘plateaus’’ where the scalar depe
smoothly on the position.

The emergence of this ubiquitous pattern is explained
considering the action of the velocity derivative matr
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]avb . As emphasized in Refs.@20,21#, scalar gradients are
weak in the elliptic regions of the velocity field where th
‘‘rotational’’ character inhibits the formation of strong scal
gradients. On the contrary, in the hyperbolic regions the fl
is almost ‘‘irrotational’’: the alignment of scalar gradien
with the direction of the eigenvector corresponding to
most negative eigenvalue of the velocity derivative mat
~roughly, the direction of compression along one direction! is
not discouraged, and actually observed@20#, and strong sca-
lar gradients develop.

When the scalar is forced by isotropic injection mech
nisms, no preferential direction arises and the intense gr
ents are randomly oriented. The final result is a small-sc
isotropic statistics. The situation changes in the case
nonisotropic injection mechanisms like the one encounte
here. In this case strong gradients are oriented alongG and,
as very recently shown in Refs.@22,23#, small-scale isotropy
is consequently not restored for the scalar field. Exploit
the relation between the magnetic field and the magnetic
function, we can conclude that extreme magnetic fluctuati
have a tendency to occur preferentially along the direct
B̂o, the origin of the observed small-scale anisotropy.

In the compressible case both eigenvalues can be n
v.

,

e

-
i-

le
of
d

g
x
s
n

a-

tive. Compression may thus occur in both directions, enha
ing the formation of fronts in the magnetic flux function.

In conclusion, we presented a simple model of MHD tu
bulence where, by varying the degree of compressibility
the velocity field, the persistence of anisotropy is detecta
both from the hierarchy of inertial range exponents and fr
the divergence of skewness factor with the Pe´clet number.
Although our results were obtained on the base of a spe
model, they seem to be rather general: a similar behavio
also observed for a passive scalar advected by a comp
ible velocity field @9# ~however, the flattening is less pro
nounced for the latter!. The results presented here give ev
dence of a turbulent system displaying such twofo
behavior.
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